New Quasi-Exactly Solvable Difference Equation
نویسندگان
چکیده
منابع مشابه
Quasi Exactly Solvable Difference Equations
Several explicit examples of quasi exactly solvable ‘discrete’ quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable Hamiltonians of one degree of freedom. These are difference analogues of the well-known quasi exactly solvable systems, the harmonic oscillator (with/without the centrifugal potential) deformed by a sextic potential and the 1/ sin x potential de...
متن کاملMulti-Particle Quasi Exactly Solvable Difference Equations
Several explicit examples of multi-particle quasi exactly solvable ‘discrete’ quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable multi-particle Hamiltonians, the Ruijsenaars-Schneider-van Diejen systems. These are difference analogues of the quasi exactly solvable multi-particle systems, the quantum Inozemtsev systems obtained by deforming the well-known ex...
متن کاملNew Solvable and Quasi Exactly Solvable Periodic Potentials
Using the formalism of supersymmetric quantum mechanics, we obtain a large number of new analytically solvable one-dimensional periodic potentials and study their properties. More specifically, the supersymmetric partners of the Lamé potentials ma(a+ 1) sn(x,m) are computed for integer values a = 1, 2, 3, .... For all cases (except a = 1), we show that the partner potential is distinctly differ...
متن کاملQuasi - Exactly Solvable Potentials
We describe three di erent methods for generating quasi-exactly solvable potentials, for which a nite number of eigenstates are analytically known. The three methods are respectively based on (i) a polynomial ansatz for wave functions; (ii) point canonical transformations; (iii) supersymmetric quantum mechanics. The methods are rather general and give considerably richer results than those avai...
متن کاملBethe ansatz solutions to quasi exactly solvable difference equations
Bethe ansatz formulation is presented for several explicit examples of quasi exactly solvable difference equations of one degree of freedom which are introduced recently by one of the present authors. These equations are deformation of the well-known exactly solvable difference equations of the Meixner–Pollaczek, continuous Hahn, continuous dual Hahn, Wilson and Askey–Wilson polynomials. Up to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Mathematical Physics
سال: 2008
ISSN: 1776-0852
DOI: 10.2991/jnmp.2008.15.s3.36